Курсовые по математике, физике. Лабораторные и практические работы

Сопромат
Математика
Решение интегралов
Решение алгебраических и трансцендентных уравнений
Построение многочлена Лагранжа
Метод Симпсона
Метод наименьших квадратов
Методы решения систем линейных уравнений
Ручные вычисления по методу Гаусса
Компакт-метод
Метод равномерного поиска
Градиентный метод
Элементы математической статистики
Законы распределения случайных величин
Физика
Практические занятия
Изучение движения тела по окружности под действием сил упругости и тяжести
Изучение закона сохранения механической энергии
Наблюдение зависимости скорости диффузии в жидкости от температуры
Проверка изотермического процесса
Определение относительной влажности воздуха
Определение мощности лампочки накаливания
Наблюдение и анализ явления электромагнитной индукции
Определение показателя преломления стекла
Наблюдение и объяснение полного отражения света
Определение световой волны света с помощью дифракционной решетки
 

 

Решение интегралов. Выполнение контрольного, курсового, типового расчета

Лекции по сопромату для студентов строительных специальностей

  • Расчет многопролетных статически определимых балок
  • Линии влияния внутренних усилий При построении линий влияний внутренних усилий рассматривают два положения подвижной единичной силы - слева и справа от рассматриваемого сечения. При этом рассматривают равновесие той части балки, на которой в данный момент отсутствует подвижная сила.
  • Расчет распорных систем Распорной называется такая система, в результате действия на которую вертикальных внешних нагрузок в ней возникают наклонные опорные реакции.
  • Действительная работа внешних сил При определении работы внешних сил рассматривается статическое приложение нагрузки, когда она в процессе приложения к конструкции достаточно медленно возрастает от нуля до какого-то конечного значения и в дальнейшем остаётся неизменной.
  • Правило П. Верещагина На практике часто встречаются случаи, когда на отдельных участках стержни имеют одинаковые физические и геометрические параметры, а одна из подынтегральных функций изменяется линейно.
  • Основная система метода сил Любой способ раскрытия статической неопределимости предполагает выбор для заданной системы основной системы. В методе сил основную систему выбирают из заданной, устраняя «лишние» связи. За «лишние» могут быть приняты как внешние, так и внутренние связи. Внешние связи являются опорными связями, а внутренними являются связи, препятствующие взаимному перемещению двух смежных сечений при мысленном рассечении стержня или удалении из него шарнира.
  • Уравнение трех моментов Неразрезной называется статически неопределимая балка, прикреплённая к земле более чем тремя простыми кинематическими связями.
  • Канонические уравнения метода перемещений В каждой условно введенной связи основной системы возникают реактивные усилия как от действия внешней нагрузки, так и от смещения связей. В заделках возникают реактивные моменты, а в линейных связях - реактивные усилия.
  • Расчет рамы на динамическое действие нагрузки Рассмотрим статически определимую раму, на горизонтальном элементе которой находятся колеблющиеся массы.
  • Определение изгибающих моментов и поперечных сил в опорных сечениях
  • Матричный алгоритм расчета неразрезной балки может быть получен по общим для метода сил принципам или матричной записью системы уравнений трех моментов. В заключение полезно в общих чертах разобрать порядок расчета неразрезных балок на упругоподатливых опорах.
  • Устойчивость тонкостенных стержней и пластин Специальные вопросы устойчивости могут .быть изучены в общих чертах. К сожалению, в приведенных выше источниках не все вопросы темы освещены, часть из них, например, устойчивость пластин, рассматривается в курсах теории упругости.
  • Расчет плоской рамы на устойчивость

Лабораторные работы по физике

Обработка результатов измерений на примере задачи определения обьема цилиндра Цель работы: ознакомиться с методом обработки результатов измерений.

Приборы и принадлежности: цилиндр, штангенциркуль, микрометр.

Теоретические сведения Каждая лабораторная работа физического практикума связана с измерениями тех или иных физических величин.  Под измерением понимается сравнение измеряемой величины с другой величиной, принятой за единицу измерения. Различают измерения прямые и косвенные. Прямые - это измерения, которые производятся с помощью приборов, непосредственно дающих значение измеряемой величины (длины - линейкой, штангенциркулем; времени - секундомером; силы тока - амперметром и т.д.) Косвенныe - это измерения, при которых неизвестная величина определяется по результатам прямых измерений других величин

МАЯТНИК  ОБЕРБЕКА

Цель: познакомиться с динамическими характеристиками вращательного движения твердого тела, а также с использованием основного закона динамики вращательного движения. Приборы и принадлежности: маятник Обербека, секундомер, мерительная линейка, штангенциркуль.

Краткие теоретические сведения Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела. Динамическими характеристиками вращательного движения тела являются: момент инерции тела относительно оси, момент силы относительно оси, момент импульса тела относительно оси вращения.

ФИЗИЧЕСКИЙ МАЯТНИК

Цель: познакомиться с методом определения моментов инерции тел. Приборы и принадлежности: исследуемое тело (пластина), кронштейн для подвешивания тела, секундомер, линейка, математический маятник.

Краткие теоретические сведения Физическим маятником (ФМ) называется твердое тело, которое может колебаться под действием силы тяжести вокруг горизонтальной оси (не проходящей через центр масс тела). При колебании ФМ как бы вращается вокруг оси О. (Кстати, точку О пересечения оси с вертикальной плоскостью, проходящей через центр масс С тела, называют точкой подвеса). Следовательно, движение маятника подчиняется основному уравнению динамики вращательного движения:

ИССЛЕДОВАНИЕ ЭЛЕКТРОСТАТИЧЕСКИХ ПОЛЕЙ

Цель работы: ознакомиться с методом моделирования электростатического поля с помощью электропроводной бумаги; исследовать электростатическое поле плоского и цилиндрического конденсаторов. Приборы и принадлежности: источник постоянного тока, вольтметр, электропроводная бумага, планшет с набором электродов, проводники, один из которых снабжен зондом.

Сведения из теории Электростатическое  поле (ЭСП) - форма материи, осуществляющая взаимодействие между заряженными телами. Основным свойством поля является его силовое действие на любой заряд, помещенный в поле. Источником ЭСП является неподвижный заряд (заряженное тело). Количественными характеристиками ЭСП являются напряженность и потенциал. Напряженность поля - векторная физическая величина, характеризующая силовое действие поля в точке, численно равная силе, с которой поле действовало бы на положительный единичный заряд, помещенный в данную точку поля и по направлению совпадающая с направлением действия этой силы.

ОПРЕДЕЛЕНИЕ  ЭДС ИСТОЧНИКА ТОКА КОМПЕНСАЦИОННЫМ МЕТОДОМ 

Цель работы: ознакомиться с компенсационным методом измерения ЭДС. Приборы и принадлежности: нормальный элемент с ЭДС eN, исследуемый источник eх, вспомогательная батарея e, потенциометр ПП-63, проводники, гальванометр Г (eN, e и Г часто вмонтированы в потенциометр), делитель напряжения, ключ.

Определение магнитной индукции в межполюсном зазоре прибора магнитоэлектрической системы

Цель работы: ознакомиться с принципом действия измерительного прибора магнитоэлектрической системы, определить величину индукции магнитного поля в межполюсном зазоре прибора, исследовать графически зависимость угла поворота рамки прибора от силы тока в ней.

Приборы: амперметр магнитоэлектрической системы, шкала которого специально для данной работы проградуирована в градусах; два реостата; амперметр или прибор комбинированный типа Ф 4313, Ц 4315, Ц317 для измерения тока, напряжения и сопротивления.

Сведения из теории Движущиеся заряды (токи) изменяют свойства окружающего их пространства - создают в нем магнитное поле. Наличие магнитного поля проявляется в действии силы на движущиеся в нем заряды (токи).

 Если в магнитное поле поместить небольшую свободно ориентирующуюся (поворачивающуюся до тех пор, пока действует вращающий момент) рамку с током, то она установится определенным образом. Следовательно, магнитное поле имеет направленный характер и должно характеризоваться векторной величиной. Эту величину называют индукцией магнитного поля (магнитной индукцией ) и обозначают буквой .

За направление вектора  принимают направление положительной нормали (положительная нормаль к плоскости рамки образует правый винт с направлением тока в рамке), установившейся и свободно ориентирующейся небольшой рамки с током.

Согласно гипотезе Ампера, в постоянных магнитах, в частности в магнитной стрелке, круговые “молекулярные токи“ расположены в параллельных плоскостях и направлены в одну сторону. Благодаря этому действие магнитного поля на магнитную стрелку аналогично действию на рамку с током. Поэтому за направление вектора   берут также направление, в котором устанавливается северный конец магнитной стрелки, помещенный в данную точку поля.

ОПРЕДЕЛЕНИЕ РАДИУСА КРИВИЗНЫ ЛИНЗЫ С ПОМОЩЬЮ КОЛЕЦ НЬЮТОНА

Цель работы: пронаблюдать на опыте интерференцию света в тонкой пленке (в воздушном слое между линзой и пластинкой) в виде колец Ньютона и познакомиться с методом определения радиуса  кривизны линзы с помощью колец Ньютона. Приборы и принадлежности: плосковыпуклая линза, поставленная выпуклой стороной на плоскопараллельную пластину и закрепленная на ней; микроскоп; источник света; небольшая часть линейки с миллиметровой шкалой.

Сведения из теории В основе определения радиуса кривизны линзы или длины волны света с  помощью колец Ньютона лежит явление интерференции. Сущность явления интерференции заключается в отсутствии суммирования интенсивностей световых волн при их наложении, т.е. при наложении световых волн происходит перераспределение светового потока в пространстве, в результате чего в одних точках пространства возникают максимумы, а в других - минимумы интенсивности. Необходимым условием интерференции световых волн является их когерентность: постоянство во времени разности фаз колебаний вектора E (и соответственно вектора H) в произвольной точке встречи складываемых электромагнитных волн. Известно, что два независимых источника света не дают когерентных волн. Для получения последних пучок (луч) света от одного источника делят каким-либо  способом на две части или непосредственно выделяют два пучка (луча) от одного  источника, направляют их разными путями, а затем сводят в одну область пространства.

ИЗУЧЕНИЕ ЯВЛЕНИЯ ДИФРАКЦИИ СВЕТА С ПОМОЩЬЮ ДИФРАКЦИОННОЙ РЕШЕТКИ

Цель работы: изучить явление дифракции в монохроматическом свете при помощи дифракционной решетки и щели. Приборы и принадлежности: лазер, дифракционная решетка (или щель), измерительная линейка и экран.

Сведения из теории Дифракцией света называют явления,  вызванные нарушением цельности волновой поверхности. Дифракция проявляется в нарушении прямолинейности распространения колебаний. Волна огибает края препятствия и проникает в область геометрической тени. Дифракционные явления присущи всем волновым процессам, но проявляются особенно отчетливо лишь в тех случаях, когда длины волн излучений сопоставимы с размером препятствий. С точки зрения представлений геометрической оптики о прямолинейном распространении света граница тени за непрозрачным препятствием  резко очерчена лучами, которые проходят мимо препятствия, касаясь его поверхности.  Следовательно, явление дифракции необъяснимо с позиций геометрической оптики.  По волновой теории Гюйгенса, рассматривающей каждую точку поля волны как источник  вторичных волн, распространяющихся по всем направлениям, в том числе и в область  геометрической тени препятствия, вообще неясно, как может возникнуть сколько-нибудь отчетливая тень. Тем не менее, опыт убеждает нас в существовании тени, но не резко очерченной, как утверждает теория прямолинейного распространения света, а с размытыми  краями. Причем в области размытости наблюдается система интерференционных максимумов и минимумов освещенности.

ИССЛЕДОВАНИЕ  ФОТОЭЛЕМЕНТОВ

Цель работы: снять вольт-амперную и люкс-амперную характеристики вакуумного фотоэлемента и фотосопротивления. Приборы и принадлежности: оптическая скамья, вакуумный фотоэлемент СЦВ-4, фотосопротивление, вольтметр, миллиамперметр, выпрямитель, источник света.

Сведения из теории Действие фотоэлементов основано на явлениях внешнего и внутреннего фотоэффектов. Внешним фотоэффектом называется явление испускания электронов металлами под действием света. Для внешнего фотоэффекта характерны следующие закономерности.

1. Число электронов, испускаемых веществом в единицу времени, пропорционально интенсивности падающего света.

2. Начальная скорость вылетевших электронов определяется частотой света и не зависит от его интенсивности. С увеличением частоты падающего света скорость электронов увеличивается.

3. Для каждого вещества существует так называемая красная граница фотоэффекта, т.е. минимальная частота света n0, при которой еще имеет место фотоэффект. Величина n0 зависит от химической природы вещества и состояния его поверхности.

4. Фотоэффект практически безынерционен, т.е. между началом освещения и возникновения фотоэффекта нет заметного промежутка времени.